楠木轩

GDC I 《重返帝国》千人同屏战斗技术分享

由 习国防 发布于 科技

第35届全球游戏开发者大会 (GDC) 于 3 月 20 至 24 日在美国旧金山举行。

腾讯天美 T2 工作室的客户端组主程序肖健和引擎负责人侯仓健在会上进行了主题为“千人同屏战斗:Unity DOTS在《重返帝国》中的应用”的演讲,两位分享了在手机有限的性能中,团队是如何应用Unity DOTS使《重返帝国》在移动端上的表现同时兼顾了性能与品质的。

(左)肖健,(右)侯仓健

以下为演讲内容整理:

以往,SLG 游戏常面临千人同屏大规模战斗的需求,手机的有限性能便成为限制游戏发挥的枷锁。《重返帝国》作为一款高品质全 3D SLG 手游,游戏场景规模宏大,玩家操作自由多变,画面上经常会出现超过1000个士兵一起战斗的场景。在有限的移动设备性能上,想要同时兼顾性能与品质,团队在尝试过C#、C++以及DOTS等多种技术方案的选型与研究后,最终选择了Unity DOTS。

Unity DOTS对于 T2 工作室可以说是一次敢为人先的选择,当时市面上并没有比较知名的使用这项技术的游戏项目,所以这项技术最后呈现出来的效果其实是没有太多参考的。其次,当时DOTS是处于一个比较初期的版本,Unity官方还在不停的修改和完善,这意味着团队享受不到新的features,甚至可能需要处理一些潜在的隐患,这对团队来说是不小的挑战。

团队一方面与Unity官方保持密切的合作与交流,另一方面经过多次的技术迭代与优化,最终在《重返帝国》项目上取得了很好的实践效果,在移动设备上为玩家呈现了极高品质的视觉效果。同时团队也积累了一套行之有效的方法论,以下总结了几点分享给大家。

1.Job数据依赖分析与优化,提升整个系统的并发性

当我们完成了整体的框架设计和核心的实现后,在进行性能分析的时候发现Job的并发性并不高,且worker存在大量的idle状态,导致系统的整体耗时偏高。为此,我们专门开发了静态分析工具辅助我们找出System之间的读写冲突与依赖,通过数据拆分、数据备份来解决冲突,让耗时较高的Job能够并行。

数据依赖静态分析工具

数据拆分解决写入冲突

数据备份解决读写冲突

基于工具的分析,我们不断的细化和调整,解决了数据的冲突依赖,显著提高了Job的并发性,最终达到了我们相对满意的并行效果。

数据依赖优化后Job的并发执行

2.将部分ECS System的Job与非ECS逻辑并行,充分发挥多核

之后,我们还将System按照功能进一步的细化拆分,把一部分Job的执行提前到与非ECS代码逻辑并行,进一步从整体上提高了我们的游戏帧率。

ECS Job与非ECS逻辑并行

3.逻辑数据显示分离,提升chunk内存利用率,减少资源加载带来的卡顿

在进行了Job并行性优化之后,我们发现在大地图上拖动时存在由于Entity资源同步加载导致的一些耗时峰刺,这对玩家来说是体验上的损失。所以我们针对Entity,使用逻辑与显示分离,一方面让资源可以异步加载减少卡顿,另一方面也提升了单个chunk的内存利用率减少CPU的cache missing。

逻辑显示分离-资源异步加载

4.针对System进行逻辑降频,保证效果同时也提升性能

最后,我们在不影响效果的前提下,针对部分System进行逻辑降频与错帧(如移动逻辑计算相关的System降到12帧、耗时较高的MoveJob与AnimatorJob错帧执行),让整体的耗时更加平滑,并且有效的降低了游戏的功耗。

性能优化方面

当时我们使用的是 Unity2019版本,Hybrid Render V1 版本,为了能更顺利的将DOTS适配到我们的项目中,我们也在原始框架的基础上,在资产与渲染方面也进行了大量的按需开发。

我们在接入 DOTS 技术栈时,主要面临了以下3个问题:

1.资源兼容性:因为在接入时已经处于项目中期,很多游戏资产及对应的生产流水线已经成型,所以如何将已有游戏资产转变成可在 DOTS 技术栈中运行的资产,是我们需要解决的问题。

2.逻辑阶段的基础开销过大:可能会导致千人同屏场景出现时出现卡顿。

3.渲染阶段无法修改自定义的材质属性:因为我们对于战斗场景的还原重度依赖 GPU Instancing 技术,所以需要很多自定义的材质属性可以在运行时被复写。

于是,我们针对以上问题逐个研究核心痛点,找到了适合我们项目的解决方案。

在资源兼容性方面,在综合评估了各种方案之后,我们决定实现一套自己的序列化和反序列化流程。

我们的方案分为离线和运行时两个阶段:离线时,我们将游戏中各类资产对应的prefab拆分成二进制文件和引用到的资源文件;运行时,我们创建了一个“deserialize world”,用来把离线时生成的二进制文件和资源文件反序列化,生成entity。当entity生成好后,我们再把它们移入default world进行运行。这样我们既可以在资产制作阶段使用我们熟悉的prefab,也可以减少运行时的转换时间。

资产Entity实例化

对于HybridRenderV1在逻辑阶段的开销过大,我们定位到了核心的瓶颈是主线程阻塞。比如整个生成合批信息的过程都是放在主线程中进行的,这个过程有很大的优化空间。

我们的优化方向就是多线程化,充分利用移动端的多核优势。其实在生成合批信息时,不同的RenderMesh一定对应不同的batch,任务本身具有可多线程化的特性。所以如下图所示,我们分配了一个较大的缓存数组,数组的大小与线程数量和RenderMesh数量相关。多个线程并行完成对含有RenderMesh的Chunk进行筛选,并填入缓存数组的指定位置。因为在缓存数组中,每个线程都有自己的写入空间,所以多线程并行时,不会产生数据写入冲突。

多线程RenderMesh Batch

我们还对游戏中LOD的结构进行了优化。我们游戏中的模型一般有4层LOD,在转换成entity后,将会有6个相关的entities生成。

过多的entity不仅浪费内存,同时也会导致很多冗余计算(比如同步位置信息),而根据LOD的特点,我们可以只记录单个LOD的信息,在渲染时按需替换成应当显示的LOD Mesh即可,这样我们就可以把原本的4个LOD网格当做一个单独的网格来对待。同时,我们也将LOD Group节点和Root节点进行了合并,Entity的数量也从原来的6个下降到2个,性能也有了提升。

这种方式带来的一个额外好处是当我们更高层级的LOD还未加载完成或渲染压力过大时,我们可以只加载低层级的LOD模型来显示。

LOD结构优化

为了在C#中更改材质的Instance属性,我们定义一个和Instance属性完全匹配的IComponentData Struct,在数据对齐方面,我们遵循std140内存数据对齐原则。如下图所示:

Instance属性对齐

在渲染运行时,我们根据entities的数量预先分配一块大的缓存,之后利用多线程把各个可见的entity的InstanceParam数据复制到Buffer中的指定位置。最后将整个缓存直接提交至GPU,我们就可以按照传统的GPU Instance方式来使用缓存中的数据了。

在有了RenderMesh上的材质信息和mesh数据之后,我们的InstanceBuffer也组织好了,这样通过调用Unity的DrawMeshInstanced接口就可以进行渲染了。

Instance Data Buffer

以上都是团队在实践中不断迭代总结出来的宝贵经验,希望对那些同样想使用Unity DOTS技术的团队能有所启发。