科学家发现一种全新热传递方式,或改写物理教科书
热传递的三种方式
在初高中的物理学课上,都会涉及声、光、电、力、热这几个部分。其中在讲到热力学时,老师通常会说,热传递有三种方式:热传导、热对流 、热辐射。
首先,我们要知道的是,万物都是由粒子构成的。但是粒子自身并不是原地不动,而是到处乱晃的。
热对流是指流体的宏观运动导致流体各部分之间发生了相对位移,冷热流体就会发生互相掺杂,也就实现了热量传递的过程;
事实上,科学家早就发现了,在纳米尺度上,承载大规模的集成电路设备的电子元器件传递热量要比理论激素按要高出一些来。那这些高出理论的热量是从哪里来的呢?
这个问题一直就没有能够很好地被解决。
第四种热传递方式
最近,由物理学家张翔带队的考研团队,通过实验证实了,在纳米尺度之下,真空环境下会发生真空声子传热,也就是一种全新的热传递方式。他们还在《自然》上发表了相关的学术论文。这里补充一点,这里的“声子”是翻译而来的一个名字,它的传递是不需要介质的,是在真空状态下完成的。那张翔的团队是如何证实的呢?
要了解这个过程,我们就得先来说一说量子力学。在量子力学的框架当中,真空其实不空,而且还非常的热闹。根据量子力学,我们知道,真空中虽然不存在实粒子,但是却存在着虚粒子。而虚粒子并不是单个出现的,而是成对出现的,一正一反,并且会在极其短的时间内发生湮灭。
张翔所带领的团队就是想要测出这个过程是否有热传递。他们把两块100纳米厚的氮化硅薄膜在真空中平行放置,并且控制两个薄膜一端热,一段冷。
于是,他们就发现,随着两个薄膜之间的距离逐渐减少,薄膜的温度慢慢地趋于一致。即便是让一开始两个薄膜的温度差达到25度,在随着薄膜距离的靠近,温度也会趋于一致。
真空声子传热有什么用?
相信很多人也会想即便是整个事实被确认了,那又能如何呢?
其实整个发现会深深影响我们的生活,我们就举一个例子。如今的许多精密仪器都达到了纳米尺度,尤其是芯片已经做到7纳米左右的水平。但是芯片的散热问题一直无法得到解决,也成了科技发展的一个瓶颈之一。当科学家完全搞清楚了真空声子传热,那就可以优化芯片的设计,进一步缩小体积,同时降低能耗和散热。所以,这个热传递的发现很有可能会改变芯片领域的发展。