全等變換
平移:平行等線段
對稱:角平分線或垂直或半角
旋轉:相鄰等線段繞公共頂點旋轉
對稱全等模型
説明:以角平分線為軸在角兩邊進行截長補短或者作邊的垂線,形成對稱全等。兩邊進行邊或者角的等量代換,產生聯繫。垂直也可以做為軸進行對稱全等。
對稱半角模型
説明:上圖依次是45°、30°、22.5°、15°及有一個角是30°直角三角形的對稱,翻折成正方形或者等腰直角三角形、等邊三角形、對稱全等。
旋轉全等模型
半角:有一個角含1/2角及相鄰線段
自旋轉:有一對相鄰等線段,需要構造旋轉全等
共旋轉:有兩對相鄰等線段,直接尋找旋轉全等
中點旋轉:倍長中點相關線段轉換成旋轉全等問題
旋轉半角模型
説明:旋轉半角的特徵是相鄰等線段所成角含一個二分之一角,通過旋轉將另外兩個和為二分之一的角拼接在一起,成對稱全等。
自旋轉模型
構造方法:
遇60度旋60度,造等邊三角形
遇90度旋90度,造等腰直角
遇等腰旋頂點,造旋轉全等
遇中點旋180度,造中心對稱
共旋轉模型
説明:旋轉中所成的全等三角形,第三邊所成的角是一個經常考察的內容。通過“8”字模型可以證明。
模型變換
説明:模型變形主要是兩個正多邊形或者等腰三角形的夾角的變化,另外是等腰直角三角形與正方形的混用。
當遇到複雜圖形找不到旋轉全等時,先找兩個正多邊形或者等腰三角形的公共頂點,圍繞公共頂點找到兩組相鄰等線段,分組組成三角形證全等。
中點旋轉:
説明:兩個正方形、兩個等腰直角三角形或者一個正方形一個等腰直角三角形及兩個圖形頂點連線的中點,證明另外兩個頂點與中點所成圖形為等腰直角三角形。證明方法是倍長所要證等腰直角三角形的一直角邊,轉化成要證明的等腰直角三角形和已知的等腰直角三角形公旋轉頂點,通過證明旋轉全等三角形證明倍長後的大三角形為等腰直角三角形從而得證。