高考數學試卷中解析幾何分值約32分。解析幾何就是用代數的方法解決幾何問題,主要有兩大類問題,一類是幾何問題代數化,即求曲線軌跡方程;另一類是處理線線的位置關係,即用代數的方法主要解決直線和直線、直線與圓錐曲線的位置關係。
高考數學中關鍵的題目是解析幾何解答題。解析幾何解答題一般在最後兩個題的位置,是最難的兩個題目之一,是把關題目。解析幾何解答題只要能不丟分,説明運算能力沒有問題,其他題目做起來也不會有太大的問題。可以毫不誇張地講,只要解析幾何解答題能拿滿分,數學學科就可以拿高分。
如何解答解析幾何題呢?從以下5個方面入手:
第一,求解曲線軌跡方程。常用方法有定義法(又稱五步法)、待定係數法、相關點法(又稱代入法)、參數法和幾何法。其中定義法、待定係數法最常用。在不知道曲線的形狀和位置時,最好用定義法和相關點法;如果已知曲線的形狀和位置,常用待定係數法。
第二,求直線和曲線的位置關係。常用的套路是解方程組、化為x或者y的一元二次方程、△、韋達定理等,要熟練,甚至背會。
第三,運算問題。解析幾何題目本身並不很難,難就難在運算上。解決運算問題,必須要有信心,按部就班計算就行了,不要怕麻煩,運算難在含有多個參數的化簡和討論。處理運算問題有技巧。含有參數,一般要先去分母再做其他運算,如用待定係數法設圓錐曲線方程之後,肯定要和直線方程聯立解方程組,就要先去分母,再代入消去x或者y。如果考慮圓錐曲線的定義(特別是統一的第二定義)、整體代入、平面幾何知識以及整體結構等,運算將更加方便。不過,更重要的是要有運算的信心和能力。
第四,向量問題。向量其實是一種工具,高考題中常常把解析幾何和向量結合命題。遇到向量,首先要看向量本身所表示的幾何意義,比如可以看出來平行(共線)、垂直、三點共線、角平分線、定比分點等等,往往使問題簡化;其次把向量用座標來表示,一個向量方程轉化為兩個實數方程,再與韋達定理得到的兩個方程聯立,找出座標之間的關係,結合題目的具體條件,就可以處理向量問題。
第五,求最值和取值範圍問題。依據題目,由交點的個數和位置、相互關係或者其他的限定條件得到不等式(組),求出最值或者取值範圍,這是最常用的方法。分離參數轉化為函數最值問題,這往往是比較簡單的問題;還可以用基本不等式、導數等方法來求。