楠木軒

移動芯片如何走出“高水平均衡陷阱”?

由 希學英 發佈於 科技

編者按:本文來自微信公眾號“腦極體”(ID:unity007),作者:藏狐,36氪經授權發佈。

嗨朋友,今天你捲了嗎?

“內卷化”這個略顯殘酷的名詞,已經成為了當代年輕打工人互相調侃的社交密碼。而整個行業一旦內卷,卻是腥風血雨的肉搏戰。這個場景,對於移動芯片領域的玩家來説,並不陌生。

如果你關注近年來的半導體行業,會發現幾乎有實力的芯片廠商都陷入了一個所謂的“高水平均衡陷阱”。

比如迄今為止業界能達到的集成度最高、可規模化量產的芯片製造工藝——5nm製程,就在兩個月左右的時間,幾乎集齊了全球手機SoC芯片設計界的“五張王牌”。

10月份,蘋果iPhone 12系列手機搭載的A14,搶下了5nm芯片的全球首發;隨後華為Mate40系列搭載的麒麟9000系列芯片,又成為當時工藝最先進、晶體管數最多、集成度最高和性能最全面的5G SoC。而就在前不久,三星又發佈了全球第二款5nm製程、集成了5G基帶的芯片Exynos1080。高通、聯發科、英偉達雖然還沒有流片,但也早有媒體爆出了將開始 5/4nm 量產的消息。

眾所周知,芯片製程越先進,單位面積內需要容納的晶體管數目就越多,就越逼近物理體系的極限。業內已有共識,那就是在5nm製程之後,芯片設計會面臨更加複雜的物理效應問題,難度指數級增加,也意味着研發和製造成本的上升。

今天的移動芯片領域,似乎與內卷化及其所導致的“高水平均衡陷阱”異常契合。

美國人類學家吉爾茨認為內卷化是邊際效用持續遞減的過程,一種社會或文化模式在某一發展階段達到一種確定的形式後,便停滯不前或無法轉化為另一種高級模式的現象。那麼,從移動芯片的“內卷化”中,我們能夠讀出什麼?

困守摩爾定律圍城:移動芯片為何越來越“卷”?

美國經濟學家曼瑟爾·奧爾森曾經用“集體行動的邏輯”,來解釋現代化國家內卷化的成因。一個公平正義的制度,能夠讓人們按照亞當斯密的自利原則展開活動,進而促進公共利益最大化。但“集體行動的邏輯”會擊潰這一制度,進而導致增長有限,陷入內卷。

顯然,如今半導體領域被作為政治博弈工具,進入逆全球化模式的情況,正是一種內卷化的制度。失去了共建、合作、貿易動能的移動芯片市場,就如同閉關鎖國的國家一樣,因為割裂而卷得乾脆。

除了制度方面的原因,智能手機作為高性能芯片的最大消費市場,如今的增長環境和商業模式也都發生了重大變化,各個廠商都進入了存量市場的白熱化競爭中,當產品增速超過市場增速,相關產業鏈自然也就進入了漫長而痛苦的調整期。

為什麼集體選擇要在製程上掰手腕?“摩爾定律已死”的話已經喊了好多年,大家都知道它的物理瓶頸近在眼前。量子計算雖然美好,但尚未進入實踐階段,距離落地微型移動芯片就更加遙遠;新型半導體材料的產業化生產,也有着醬醬釀釀的技術問題有待解決;光芯片、腦芯片則更停留在暢想階段。主力軍還是隻能跑在摩爾定律的製程大道上。

當然,這一路徑的天花板也是清晰可見的。按照蘋果官方公佈數據,A14相比A13,工藝製程從7nm升級到了5nm,但CPU只提升了17%,GPU只提升了8%,和理論值差了不少。

 “八仙各顯神通過獨木橋”的場景,決定了芯片廠商們必須精耕細作才能擁有機會,但最終的解決之道一定是告別無止境地內卷,向外尋找更高遠的天空。

尋路:小術,大道

歷史上成功突破內卷的國家有很多,比如農耕文化深重的法國就轉型出海,荷蘭、英國、美國也曾在發展中掙脱內卷化的魔咒,其中典型的推動力如亞當斯密的《國富論》、瓦特的蒸汽機等,恰恰説明了新技術與新思想的開放、交流,最終打破內卷化。

具體到移動芯片領域,有哪些新增量值得關注呢?

首要機會,當然是5G。

中國信通院的數據顯示,2020年1-9月,中國市場5G手機累計出貨量達到 1.08 億部,這是移動通信行業裏產業發展節奏最快的一年。

驟增的市場需求,也吸引了各家廠商羣雄逐鹿。蘋果、華為、三星、高通爭先領跑,聯發科、紫光展鋭等也在積極佈局。

蘋果的5G手機也在今年千呼萬喚始出來。雖然有了5G,但大家一看,有點傻眼。中國台灣地區《聯合新聞網》發佈的iPhone 12拆解文章中確認,A14芯片是外掛高通X55基帶芯片。

而緊隨其後的麒麟9000、三星Exynos1080,都採用了將應用處理器和5G基帶集成在一起,也就是SoC的方式來製造5G芯片,這樣做的好處是,性能更強,功耗低,更加省電。業內的跟隨也證明了麒麟路線的正確性。

目前看來,已經推出了三代5G SoC芯片的華為顯然在5G方面更加遊刃有餘。麒麟9000內置了華為自研基帶芯片巴龍5000,5G通訊比蘋果A14明顯強不少。

在麒麟9000上,支持200M的雙載波聚合,在Sub-6G SA網絡理論下行峯值速率達到4.6Gbps,上行峯值達到2.5Gbps,在測速軟件中可以達到2.6Gbps,超出平均水平一倍,也讓5G超高速率傳輸的特質充分落地到用户體驗端,在5G SA現網環境下能打造了目前業界最快的5G體驗。

為什麼蘋果、高通等頭部玩家堅持“外掛模式”,因為5G SoC對設計和IP方面的要求很高,天線設計、信道測量,甚至基站、現網協議匹配等等,都是學問。

作為業界唯一能提供端到端SA/NSA解決方案的供應商(含系統、芯片、CPE/手機),華為和麒麟9000在5G領域的基本功毋庸置疑。技術品牌本身就是一種“話語權”,在移動芯片必須擁抱5G的趨勢下,麒麟9000和華為在5G領域的積累與突破,也讓中國頭一次躋身通訊革命浪潮的頭號牌桌上,只要上了牌桌不下去,一切皆有可能。

移動芯片的第二個焦點,是架構。

隨着人工智能等新能力的出現,移動芯片紛紛開始強調異構協同,整合CPU、GPU、NPU、DSP等單元,針對不同終端、不同任務提供彈性調用。

要根據不同產品的受眾來打造差異化體驗,採購高通、聯發科等的芯片顯然不夠,所以蘋果、華為、三星都涉足了自研架構,VIVO也選擇與三星深度合作來試圖擴大核心部件的差異點。

其中,蘋果憑藉其軟硬件一體優勢,其芯片領先於安卓芯片一直是業內所公認的, A14使用的自研架構,跑分成績就超越了依靠ARM公版架構的其他芯片。

麒麟9000全新升級Cortex-A77 CPU,採用1+3+4三檔能效架構CPU,大核主頻突破3.1GHz。GPu搭載了ARM架構上的G78微架構,在極小空間堆了24個GPU核心,與上一代麒麟990相比增加了一半,在性能和能效上協同打造最佳手機體驗。另外值得一提的是NPU升級到了達芬奇架構 2.0 版本,創新採用雙大核+微核架構,卷積網絡性能翻了一番,可以靈活應對複雜或簡易的AI任務。

Exynos1080 則是三星放棄自研架構後,與 ARM、AMD 深度合作打造的。採用新一代 ARM 架構,增加了NPU和AI解決方案,大家可能注意到了,相比CPU等等傳統計算單元,NPU的存在與升級,就像GPU專用於圖像計算一樣,憑藉其在機器學習上的特殊能力,引起移動芯片廠商的廣泛重視。高通驍龍 845 發佈之時,還因為沒有順應 NPU 的趨勢而 AI 能力落後,遭到了批評。

這種神經網絡處理器,也是在2017年由麒麟970首次引入手機的。適應AI趨勢,蘋果則在華為推出NPU同期選擇了用傳統硬件模塊進行AI適配。高通的AI Engine(人工智能引擎)也是用調整CPU、GPU、DSP等多個硬件模塊來達到NPU的效果。如果遇到高通量計算,就需要將數據上傳到雲端進行AI推理再回傳到本地。

自研架構被業內稱作是移動芯片設計領域的“成神之路”,到底有多重要?舉個例子,蘋果處理器一開始對比安卓並沒有絕對優勢,直到開始自研CPU,從基於ARM Cortex-A8架構的A4芯片開始,擺脱了對三星的依賴,也逐步形成了自身的性能優勢。可以預見的是,接下來的移動芯片架構之戰,依然還是蘋果、三星、華為這樣擁有底層自研技術的巨頭同台競技。

巨頭們打得火熱,可用户最在乎的是什麼,體驗,體驗,還是體驗。

每到手機新品發佈會環節,參數對比或許不是所有人都能看懂,但一到AI拍照、人臉識別、AR互動之類的創新應用分享,觀眾們立馬精神起來。而當代用户最離不開的基礎功能之一,就是攝影攝像。

iPhone的相機功能從第一代產品開始,就不斷有創新出現,比如2012年的全景拍攝,2015年的光學圖像穩定,2016年的肖像模式等等。

安卓陣營也在不斷追趕,近年來有許多令人印象深刻的創新,像是算法層面的AI攝影,以及最近麒麟9000在硬件層面將NPU與ISP芯片相結合,打造出了差異化視效。

ISP圖像信號處理,是圖像處理的硬件核心,拍攝時的對焦、曝光、合成等都離不開它,也直接決定了成像效果。傳統的手機芯片,並不會集成ISP,而麒麟9000則創新性地將NPU的AI能力與ISP的影像能力融合在一起。

這樣做的好處是,影像處理有了強大的算力支撐,能夠在每一幀的時間裏做複雜的算法處理,同時讓手機有了從“看清”走向“看懂”世界的能力,比如實時包圍曝光HDR視頻合成,即使在暗光下也能實時捕捉光影細節,再合成出細節充分展現的視頻。

帶來的改變也是用户可以直觀感受到的影像體驗提升,在看視頻時自動調節視頻網站的清晰度,將網絡不穩定或是片源質量比較差的視頻,利用AI讓原本低分辨率的圖像變得清晰;

又或在拍攝視頻轉場時,突然的明暗變化會導致細節消失,不得不暫停或分開拍攝,而搭載麒麟9000的手機則可以很好地捕捉和處理不同光線條件下的細節,為手機影像的提升提供了基礎保障。

站在今天,麒麟9000令人驚豔的革新與它面臨的難題,讓我想到了一首詩:如果不被河流接受,那就成為一艘船,等待風雨過後即可。縱被浪擊,也絕不沉沒。

在內卷化中重建未來,可能嗎?

美國 政治學家薩繆爾·P·亨廷頓在《文明的衝突與世界秩序的重建》中指出,高水平的經濟相互依賴“可能導致和平,也可以導致戰爭,這取決於對未來貿易的預期”。如果各國預期高水平的相互依賴不會持續,戰爭就可能出現。

顯然,全球半導體產業鏈的相互依賴關係,必然會在地緣政治局勢下變得充滿不確定性,因此,各大廠商之間的戰爭恐怕會變得更加激烈。

所以我們會在內卷化的同時,看到一些微妙的故事,華為高端麒麟芯片的供應困境,OV米對高通芯片採用比例下調,三星迅速入場有制衡高通的意味,高通又將驍龍875 5G芯片交給了三星來生產……一切都説明,沒有人永遠是這個舞台上的主角。

在移動芯片的牌局上,中國佔據的位置、手中的牌面,也備受關注。關於未來,我們沒有答案,而是想講兩個故事:

中美韓紛紛研究新材料以期替代硅材料製造半導體,日本學者曾向當局抱怨“政府支持不足”,英特爾CEO Bob Swan 也曾寫公開信號稱“先進芯片在美製造比例不足”,希望美國政府鼓勵建生產廠。到底應該像日本一樣牢牢抓住自己的產業鏈優勢,還是像美國一樣選擇查漏補缺、全面撒網,對於多年造芯的中國半導體產業來説,需要選擇的智慧。

另一個故事發生在不久前,2018年華為手機出貨量首次超過蘋果,這是麒麟970(首款搭載了NPU處理器的華為芯片)在市場上收穫的漂亮一仗。其實這款產品推出時,蘋果和谷歌也都曾在產品上強調過AI,但並未深挖,這給了華為Mate10系列憑藉AI攝影、GPU Turbo等技術打破了智能手機線性發展的固有路徑,遇上了洗牌品牌認知、衝擊原本市場結構的窗口期。

在以技術為原力的移動芯片世界裏,勞而無功的事情經常會發生,但超車機會是否會在一次次碰壁、探索中出現,考驗的是勇氣與毅力。

1793年,馬戛爾尼率領英國使團訪問中國,當時大國餘威仍在,耕地面積不斷增加,人口增加到3億,幾乎達到了農耕文明的極限,年逾八旬的乾隆自得地自稱為“十全老人”。

然而上,封閉的帝國其實早已陷入了“停滯”。黃宗智在《 長江三角洲小農家庭與鄉村發展》中將康乾盛世時期評價為“沒有發展的增長”,即“內卷化”。但乾隆沒有感覺,他拒絕了使團擴大貿易的要求,“一點兒新鮮事物都為之膽戰心驚”,希望他們速速回國。

對新事物始終保持一點敏鋭、一點盼望、一點希冀,或許是行走在逆旅之中的全球移動芯片行業,以及中國都需要學習的。