初中數學矩形、菱形、正方形的5大考點及題型彙總!
獲取更多教育經驗、方法、學習資料等,每天與您相約!
▼
一、矩形、菱形、正方形的性質
1.矩形的性質
具有平行四邊形的一切性質;
矩形的四個角都是直角;
矩形的對角線相等;
矩形是軸對稱圖形,它有兩條對稱軸;
直角三角形斜邊上的中線等於斜邊的一半。
2.菱形的性質
具有平行四邊形的一切性質;
菱形的四條邊都相等;
菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角;
菱形是軸對稱圖形,每條對角線所在的直線都是它的對稱軸;
菱形的面積=底×高=對角線乘積的一半。
3.正方形的性質
正方形具有平行四邊形,矩形,菱形的一切性質
邊:四邊相等,對邊平行;
角:四個角都是直角;
對角線:互相平分;相等;且垂直;每一條對角線平分一組對角,即正方形的對角線與邊的夾角為45度;
正方形是軸對稱圖形,有四條對稱軸。
例1 矩形ABCD中,DE⊥AC於E,且∠ADE:∠EDC=3:2,則∠BDE的度數為 ( )
A.360 B.90
C.270 D.180
例2 如圖,矩形ABCD中,AE⊥BD於點E,對角線AC與BD相交於點O,BE:ED=1:3,AB=6cm,求AC的長。
例3 如圖, O是矩形ABCD 對角線的交點, AE平分 ∠BAD,∠AOD=120° ,求∠AEO 的度數。
例5 如圖,在正方形ABCD中,G是BC上任意一點,連接AG,DE⊥AG於E,BF∥DE交AG於F,探究線段AF、BF、EF三者之間的數量關係,並説明理由.
1.矩形的判定
有一個內角是直角的平行四邊形是矩形;
對角線相等的平行四邊形是矩形;
有三個角是直角的四邊形是矩形;
還有對角線相等且互相平分的四邊形是矩形。
2.菱形的判定方法
有一組鄰邊相等的平行四邊形是菱形;
對角線互相垂直的平行四邊形是菱形;
四條邊都相等四邊形是菱形;
對角線垂直平分的四邊形是菱形。
3.正方形的判定
菱形+矩形的一條特徵;
菱形+矩形的一條特徵;
平行四邊形+一個直角+一組鄰邊相等。
説明一個四邊形是正方形的一般思路是:先判斷它是矩形,在判斷這個矩形也是菱形;或先判斷它是菱形,再判斷這個菱形也是矩形。
例1. 如圖,在△ABC中,AB=AC,點D是邊BC的中點,過點A、D分別作BC與AB的平行線,並交於點E,連續EC、AD。
求證:四邊形ADCE是矩形。
求證:AD與EF互相垂直平分。
求證:四邊形CDEF是菱形。
與函數綜合題
1.利用矩形、菱形、正方形的知識解決函數問題;
2.利用函數知識解決矩形、菱形、正方形的問題;
例1.如圖,在平面直角座標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數y=(k>0,x>0)的圖象上,點D的座標為(4,3).
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當菱形的頂點D落在函數y=(k>0,x>0)的圖象上時,求菱形ABCD沿x軸正方向平移的距離。
(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;
(2)若某函數是反比例函數,它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式。
1.從翻折中找出對稱軸,利用對稱性找相等關係。
2.利用相等關係建立方程解決問題。
例1 如圖,矩形ABCD中,E是AD的中點,將△ABE沿直線BE摺疊後得到△GBE,延長BG交CD於點F.若CF=1,FD=2,則BC的長是( )
A.3√6 B.2√6
C.2√5 D.2√3
例2 如圖,在矩形ABCD中,AB=5,BC=7,點E為BC上一動點,把△ABE沿AE摺疊,當點B的對應點B′落在∠ADC的角平分線上時,則點B′到BC的距離為()
A.1或2 B. 2或3
C.3或4 D. 4或5
A.1個B.2個
C.3個D.4個
(1)如圖1,猜想AH與AB有什麼數量關係?並證明。
(2)如圖2,已知∠BAC=45°,AD⊥BC於點D,且BD=2,CD=3,求AD的長。
1.計算。利用矩形、菱形、正方形中的等腰三角形和直角三角形進行計算。
2.證明。利用矩形、菱形、正方形的性質和判定,結合全等三角形、等腰三角形、等邊三角形的知識展開證明。
3.探究。利用矩形、菱形、正方形等知識展開探究。
例1 在數學興趣小組活動中,小明進行數學探究活動,將邊長為2的正方形ABCD與邊長為2的正方形AEFG按圖1位置放置,AD與AE在同一直線上,AB與AG在同一直線上.
(1)小明發現DG⊥BE,請你幫他説明理由.
(2)如圖2,小明將正方形ABCD繞點A逆時針旋轉,當點B恰好落在線段DG上時,請你幫他求出此時BE的長.
(3)如圖3,小明將正方形ABCD繞點A繼續逆時針旋轉,線段DG與線段BE將相交,交點為H,寫出△GHE與△BHD面積之和的最大值,並簡要説明理由。
(1)如圖1,當A、B、D在同一條直線上時,若AC=1,AE=2,求FM的長度;
(2)如圖1,當A、B、D在同一條直線上時,求證:CM=EM;
(3)如圖2,當A、B、D在同一條直線上時,請探究CM,EM的數量關係和位置關係,請先給出結論,然後證明。
求學之路,任重道遠,讓我們攜手並進,一起努力!