小學數學必考的題型,你都知道是哪些嗎?王老師在這裡給大家準備了小學數學很重要的13種典型題,給孩子收藏一下吧!
正方體展開圖
正方體有6個面,12條稜,當沿著某稜將正方體剪開,可以得到正方體的展開圖形,很顯然,正方體的展開圖形不是唯一的,但也不是無限的,事實上,正方體的展開圖形有且只有11種,11種展開圖形又可以分為4種類型:
(1)141型
中間一行4個作側面,上下兩個各作為上下底面,共有6種基本圖形
(2)231型
中間一行3個作側面,共3種基本圖形。
(3)222型
中間兩個面,只有1種基本圖形。
(4)33型
中間沒有面,兩行只能有一個正方形相連,只有1種基本圖形。
和差問題
已知兩數的和與差,求這兩個數。
【口訣】:
和加上差,越加越大;
除以2,便是大的;
和減去差,越減越小;
除以2,便是小的。
例:已知兩數和是10,差是2,求這兩個數。
按口訣,則大數=(10+2)/2=6,小數=(10-2)/2=4。
雞兔同籠問題
假設全是雞,假設全是兔。
例:雞免同籠,有頭36 ,有腳120,求雞兔數。
求兔時,假設全是雞,則免子數=(120-36X2)/(4-2)=24
求雞時,假設全是兔,則雞數 =(4X36-120)/(4-2)=12
濃度問題
(1)加水稀釋
加水先求糖,糖完求糖水。
糖水減糖水,便是加糖量。
例:有20千克濃度為15%的糖水,加水多少千克後,濃度變為10%?
(2)加糖濃化
加糖先求水,水完求糖水。
糖水減糖水,求出便解題。
例:有20千克濃度為15%的糖水,加糖多少千克後,濃度變為20%?
加糖先求水,原來含水為:20X(1-15%)=17(千克)
水完求糖水,含17千克水在20%濃度下應有多少糖水,17/(1-20%)=21.25(千克)
糖水減糖水,後的糖水量減去原來的糖水量,21.25-20=1.25(千克)
路程問題
(1)相遇問題
相遇那一刻,路程全走過。即甲乙走過的路程和恰好是兩地的距離120千米。
除以速度和,就把時間得。即甲乙兩人的總速度為兩人的速度之和40+20=60(千米/小時),所以相遇的時間就為120/60=2(小時)
(2)追及問題
例:姐弟二人從家裡去鎮上,姐姐步行速度為3千米/小時,先走2小時後,弟弟騎腳踏車出發速度6千米/小時,幾時追上?
先走的路程,為3X2=6(千米)
速度的差,為6-3=3(千米/小時)。
所以追上的時間為:6/3=2(小時)。
和比問題
已知整體求部分。
家要眾人合,分家有原則。
例:甲乙丙三數和為27,甲;乙:丙=2:3:4,求甲乙丙三數。
分母比數和,即分母為:2+3+4=9;
分子自己的,則甲乙丙三數佔和的比例分別為2/9,3/9,4/9。
和乘以比例,所以甲數為27X2/9=6,乙數為:27X3/9=9,丙數為:27X4/9=12。
例:甲數比乙數大12,甲:乙=7:4,求兩數。
先求一倍的量,12/(7-4)=4,
所以甲數為:4X7=28,乙數為:4X4=16。
工程問題
【口訣】:
工程總量設為1,
例:一項工程,甲單獨做4天完成,乙單獨做6天完成。甲乙同時做2天后,由乙單獨做,幾天完成?
植樹問題
【口訣】:
植樹多少顆,
例1:在一條長為120米的馬路上植樹,間距為4米,植樹多少顆?
路是直的。所以植樹120/4-1=29(顆)。
例2:在一條長為120米的圓形花壇邊植樹,間距為4米,植樹多少顆?
路是圓的,所以植樹120/4=30(顆)。
盈虧問題
【口訣】:
例1:小朋友分桃子,每人10個少9個;每人8個多7個。求有多少小朋友多少桃子?
一盈一虧,則公式為:(9+7)/(10-8)=8(人),相應桃子為8X10-9=71(個)
例2:士兵背子彈。每人45發則多680發;每人50發則多200發,多少士兵多少子彈?
全盈問題。大的減去小的,則公式為:(680-200)/(50-45)=96(人)則子彈為96X50+200=5000(發)。
例3:學生髮書。每人10本則差90本;每人8 本則差8本,多少學生多少書?
全虧問題。大的減去小的。則公式為:(90-8)/(10-8)=41(人),相應書為41X10-90=320(本)。
牛吃草問題
每牛每天的吃草量假設是份數1,
例:整個牧場上草長得一樣密,一樣快。27頭牛6天可以把草吃完;23頭牛9天也可以把草吃完。問21頭多少天把草吃完。
每牛每天的吃草量假設是1,則27頭牛6天的吃草量是27X6=162,23頭牛9天的吃草量是23X9=207;
大的減去小的,207-162=45;二者對應的天數的差值,是9-6=3(天)
結果就是草的生長速率。所以草的生長速率是45/3=15(牛/天);
原有的草量依此反推。
公式就是A頭B天的吃草量減去B天乘以草的生長速率。
所以原有的草量=27X6-6X15=72(牛/天)。
將未知吃草量的牛分為兩個部分:
一小部分先吃新草,個數就是草的比率;
這就是說將要求的21頭牛分為兩部分,一部分15頭牛吃新生的草;
剩下的21-15=6去吃原有的草,
所以所求的天數為:原有的草量/分配剩下的牛=72/6=12(天)
年齡問題
例1:小軍今年8 歲,爸爸今年34歲,幾年後,爸爸的年齡的小軍的3倍?
歲差不會變,今年的歲數差點34-8=26,到幾年後仍然不會變。
已知差及倍數,轉化為差比問題。
26/(3-1)=13,幾年後爸爸的年齡是13X3=39歲,小軍的年齡是13X1=13歲,所以應該是5年後。
例2:姐姐今年13歲,弟弟今年9歲,當姐弟倆歲數的和是40歲時,兩人各應該是多少歲?
歲差不會變,今年的歲數差13-9=4幾年後也不會改變。
幾年後歲數和是40,歲數差是4,轉化為和差問題。
則幾年後,姐姐的歲數:(40+4)/2=22,弟弟的歲數:(40-4)/2=18,所以答案是9年後。
餘數問題
分針旋轉一圈是1小時,旋轉24圈就是時針轉1圈,也就是時針回到原位。1980/24的餘數是22,所以相當於分針向前旋轉22個圈,分針向前旋轉22個圈相當於時針向前走22個小時,時針向前走22小時,也相當於向後24-22=2個小時,即相當於時針向後拔了2小時。即時針相當於是18-2=16(點)。
王老師精品推薦
想要檢測孩子學習成績,不知道購買什麼複習資料?下面是王老師為大家精心準備的小學六年級數學下冊課本同步各類專項練習,需要的家長可識別下圖中的二維碼即可擁有哦!
“媽媽,有人摸我”,女兒被欺負回家訴苦,卻被媽媽一句話毀掉一生,你是怎麼做的呢?