虽然,感觉难度降低了,但是在小测中有的同学成绩也并不是很好。下面就跟大家讲一下一次函数的图像和性质,初二的同学可不要错过。
一次函数的图像和性质
截距 一条直线与y轴的交点的纵坐标叫做这条直线在y轴上的截距,简称直线的截距.
要点解析
截距不是距离,是直线与y轴交点的纵坐标,因此可为正数、零、负数.
一次函数的图像★★★ 一次函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线.
解析
1.一次函数y=kx+b(b≠0),是过点A(0,b)和点B(-b/k,0)的一条直线.
如图当k<0,b>0和k>0,b<0时的图像如下:
2.当b1=b2=b时,一次函数y=k1x+b1与一次函数y=k2x+b2的图像均经过y轴上的点(0,b). 3.一次函数y=kx+b(b≠0)的图像可通过正比例函数y=kx图像平移得到当b>0时,向上平移b个单位;当b<0时,向下平移
|b|个单位.
因此可以得到:如果b1≠b2,那么直线y=kx+b1与直线y=kx+b2平行.
反过来,如果直线y=k1x+b1与直线y=k2x+b2平行,那么k1=k2,b1≠b2.
4.一次函数y=kx+b(k、b为常数,k≠0)与一元一次方程kx+b=0的关系
一元一次方程kx+b=0的解x=-b/k,就是一次函数y=kx+b(k、b为常数,k≠0)图像与x轴交点的横坐标.
5.一次函数y=kx+b(k、b为常数,k≠0)与一元一次不等式kx+b>0、kx+b<0的关系当k>0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x>-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x<-b/k.
当k<0时,要使kx+b>0,其一次函数图像应在x轴上方,故其解为x<-b/k;要使kx+b<0,其一次函数图像应在x轴下方,故其解为x>-b/k.
一次函数的性质★★★1.一次函数y=kx+b(k、b为常数,k≠0)具有以下性质:
当k>0时,函数值y随自变量x的值增大而增大;
当k<0时,函数值y随自变量x的值增大而减小.
2.k、b的符号与直线y=kx+b(k≠0)位置的关系
当k>0,且b>0时,直线y=kx+b经过第一、二、三象限;
当k>0,且b<0时,直线y=kx+b经过第一、三、四象限;
当k<0,且b>0时,直线y=kx+b经过第一、二、四象限;
当k<0,且b<0时,直线y=kx+b经过第二、三、四象限.
把上述结论反过来叙述,也是正确的.