电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?

电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
在现代社会中,人们已经无法想象没有电的生活。电能是一种看不见摸不着的奇妙能源,可能有的人会想,从商品角度来看,多发电才能多赚钱,那为什么不把多余的电储存起来,等到发电量不足的时候加以使用呢。这样电厂能多赚钱,还能节约能源。
但有物理常识的人应该知道,电能目前是无法大规模储存的。不管是比较常见的蓄电池组,或者是抽水蓄能型的水电站,它们能储存的电能,相对于整个国家的用电规模来说,是极其渺小的。电能的奇妙之处,就在于用掉多少电能,电力系统就产生多少电能,整个电网系统随时处于一个动态的平衡状态。
去年,整个中国全社会用电量达到72255亿千瓦时,规模这么庞大,国家电网怎么保证发电和用电时刻平衡的呢?根据能量守恒:中国电网每天发那么多电,用不完的电到哪里去了?
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
在我国,不管是国家电网、南方电网还是地方电网,所采用的发电、输配电、用电,都是以交流电的方式进行的。西电东输项目虽然采用了特高压直流输电技术,但在接入电网之前,应用了逆变转换为交流电,才能使用。
交流电的全国统一标准是50HZ,用电和发电都是这个频率标准,只有统一频率的交流电才能互联互通。为什么要首先解释电网频率的问题呢,因为频率决定了发电机运行时的转速。只要是接入中国电网的发动机,运转的节奏都是保持一样的。
对于整个中国电网系统,如果发电量大于用电量,那么电网的频率和电压就会随之上升。中学生学物理时做的小发明就能说明白这一点。用玩具电动机发电带动小灯泡,可以看到:电机转的频率越高,灯泡就变得越来越亮;电机转的速度下降,灯泡只会微微的发黄。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
也就是说,当电网上的用电量下降时,发电机多余的能量会导致整个系统上的发动机转速增加。能增加多少,大概能增加10%左右。与此同时,要是接入电网系统的电器没有自动功率保护装置,这些电器就会在高压状态下工作,甚至发生危险。
这样可以看出,发动机产生的多余能量一方面变成了发动机转子的机械能,仍然在电网系统当中,另外一方面输出的电压被带高,使得线路上其它用电电器超负荷工作。
用电量和供电量矛盾的情况当然会随时出现,不可能每个用户要关电视机之前都跟国家电网打电话报备一下,所以电网系统自有一套调节机制,最大程度地达到发电量等于用电量,减少能源浪费。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
由于电力无法存储的瞬时特性,发电出力要与用电负荷功率保持即时的平衡。所以,供需平衡,是电力系统调控运行的本质和必须完成的目的。
具体看的话,在电网系统有专门负责调频的电网调控机组,通过调整调频电源出力来响应系统频率变化。调频还分为一次调频和二次调频。其中,一次调频是机组自发的,不受人为控制的调频。
各发电厂的机组根据自身速度变动率的不同,自动做出幅度不同的发电量增减。调节速度快,精度高,但是调节范围小,而且是有差调节。二次调频是由专门的调频机组在电网系统的控制之下,进行的有目的有计划性的调频。
比如说,电网系统里的用户,在某一时段里大概有1000万千瓦的用电量需求,电网系统会安排900千瓦的发动机组固定输出,然后200千瓦的调频机组打配合战。根据某一时间单位下,实时的用电量需求来决定如何运转。
我国目前已运用自动调频技术,通过装在发电厂和调度中心的自动装置随系统频率的变化自动增减发电机的发电出力,保持系统频率在较小的范围内波动。从这个角度来看,每年举行的地球一小时熄灯活动,其实并不能起到节能效果。反而是在考验调频机组的应对能力。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
当许多用户在同一时间点,减少用电量,调频机组会立刻反应起来,减轻负荷,让整个电网系统维持合格的电压和频率。就好比一辆大巴车上的人,要搞节能行动,从车上下来然后步行跟在大巴车后面走一公里再坐车,并不能实际上节约能源。仅仅是起到宣传的作用。
要知道,发电厂和电网之间的调度是一个复杂的问题。各大电厂的人员纪律、配置设备都不同,在我国实行的是分级管理制度,分为县调、市(地)调、省调、区域电网调度、国网调度5级。正是这些网与网之间的协同管理,才保障了国家的电能平衡。
由前文已经知道,电网的自动调节系统能够调节发电量与用电量之间的需求矛盾。然而,当发电量远超用电量时,不可避免地会发生能源浪费。怎么办?可以想办法把电能储存起来。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
在我国,灵活调节电能的政策并没有跟上国家电网的建设速度。抽水蓄能、燃气发电等灵活调节电源装机占比不到6%,欧美等发达国家如西班牙,灵活电源占比达到了34%,可以说我国电能调节能力先天不足。
并且,最近几年,风力发电、太阳能发电占比上升,所以大量火电机组(燃煤机组燃气机组)承担了调控机组的重任,造成了发电煤耗增高、设备磨损严重等一系列负面影响。现有电力调频资源已难以满足可再生能源入网需求。
目前,抽水蓄能是目前占比最高的储能系统,占到全部储能量的99%。抽水蓄能就是将用户没有使用的过多的电力,利用起来,将水从地势低的水库抽到地势高的水库。
然后在电网负荷高、用电量过大的时候,将高位水库的水放回到低位水库,利用水能推动发电机转动起来发电。依据能量守恒定律来看,就是将多余的电能转化为水能,但并不能做到百分百的转化,准确转化率只有四分之三左右。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
在我国,已经建设有广蓄一期、北京十三陵、浙江天荒坪等几座大型抽水蓄能电站。但这些蓄能水电站目前使用率其实不高,主要受到我国电价政策的制约。
抽水蓄能水电站,不是想建就能建的,要看地势选址,要高昂的投资,要周期性的规划建设,对能源的损耗又比较高,所以并不实用,也不能满足未来大规模储能的需要。
除了抽水蓄能外,还有压缩空气储能、超级电容器储能、电化学储能、化学类储能等多种方式的大型储能技术。目前研究发展主要还是集中于超级电容和电池(锂电池、液流电池)上,材料领域的突破才是关键。
最近几年,各种新型的电化学储能电池的开发,取得进展,并被电力系统采用。主要有传统的铅酸电池和钠硫电池。钠硫电池的使用时间比较长,对环境的污染比较小、制造成本也比较低。
电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了?
但是,钠硫电池的使用环境要求特殊,只有在300摄氏度到350摄氏度之间,才可以正常使用。钠、硫这两种化学物质产生反应之后,会产生电能,钠硫电池自身可以把电能储存起来。电池储能系统用于电网机组调频,也是优点多多。具有快速响应、精确跟踪的特点,比传统调频手段更为高效。
电网使用钠硫电池,性能比其他一些新兴能源相对稳定。即便遇到电网超负荷运转的情况,钠硫电池也能稳定运作。在一些电动车和电动汽车上,也有运用到钠硫电池。
如果大规模储能得到普及,那么电网企业在调峰和供电压力得到缓解的同时,可获取更多的高峰负荷收益。也能减少各种电能质量问题造成的损失。从智能家居、电动汽车的发展来看,没有储能技术,也是无法支撑其有突破性进展的。

版权声明:本文源自 网络, 于,由 楠木轩 整理发布,共 2692 字。

转载请注明: 电力无法大量储存,中国电网每天发那么多电,剩下的电去哪了? - 楠木轩