楠木軒

小學數學簡便算法方法歸納彙總,建議家長為孩子收藏

由 終廷花 發佈於 經典

  數學作為小學三門主考科目之一,不論在哪個階段的考試當中都佔了重要的位置。小學數學學過的運算主要有加、減、乘、除、簡單的乘方。所有比較困難的計算都離不開這幾種基礎運算的演變,很多學生家長給小薈留言説孩子不會簡便計算,學數學比較吃力,其實,只要掌握好其中的一些規律,記住一些公式,計算就會變得簡單化。

  成都名師薈教育的小學數學教學組組長為各位同學總結了小學一年級到六年級簡便運算的各種方法,希望能夠幫孩子講基礎知識打紮實,從而提高數學成績。

1、提取公因式

這個方法實際上是運用了乘法分配律,將相同因數提取出來,考試中往往剩下的項相加減,會出現一個整數。

注意相同因數的提取。

例:

0.92×1.41+0.92×8.59

=0.92×(1.41+8.59)

2、借來借去法

看到名字,就知道這個方法的含義。用此方法時,需要注意觀察,發現規律。還要注意還哦 ,有借有還,再借不難。

考試中,看到有類似998、999或者1.98等接近一個非常好計算的整數的時候,往往使用借來借去法。

例:

9999+999+99+9

=9999+1+999+1+99+1+9+1—4

3、 拆 分 法

顧名思義,拆分法就是為了方便計算把一個數拆成幾個數。這需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆還要注意不要改變數的大小哦。

例:

3.2×12.5×25

=8×0.4×12.5×25

=8×12.5×0.4×25

4、加法結合律

注意對加法結合律(a+b)+c=a+(b+c)的運用,通過改變加數的位置來獲得更簡便的運算。

例:

5.76+13.67+4.24+6.33

=(5.76+4.24)+(13.67+6.33)

5、拆分法和乘法分配律結

這種方法要靈活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一個整數的時候,要首先考慮拆分。

例:

34×9.9 = 34×(10-0.1)

案例再現:57×101=57×(100+1)

6、利用基準數

在一系列數種找出一個比較折中的數字來代表這一系列的數字,當然要記得這個數字的選取不能偏離這一系列數字太遠。

例:

2072+2052+2062+2042+2083

=(2062x5)+10-10-20+21

7、利用公式法

(1) 加法:

交換律,a+b=b+a,

結合律,(a+b)+c=a+(b+c).

(2) 減法運算性質:

a-(b+c)=a-b-c,

a-(b-c)=a-b+c,

a-b-c=a-c-b,

(a+b)-c=a-c+b=b-c+a.

(3):乘法(與加法類似):

交換律,a*b=b*a,

結合律,(a*b)*c=a*(b*c),

分配率,(a+b)xc=ac+bc,

(a-b)*c=ac-bc.

(4) 除法運算性質(與減法類似):

a÷(b*c)=a÷b÷c,

a÷(b÷c)=a÷bxc,

a÷b÷c=a÷c÷b,

(a+b)÷c=a÷c+b÷c,

(a-b)÷c=a÷c-b÷c.

前邊的運算定律、性質公式很多是由於去掉或加上括號而發生變化的。其規律是同級運算中,加號或乘號後面加上或去掉括號,後面數值的運算符號不變。

例1:

283+52+117+148

=(283+117)+(52+48)

(運用加法交換律和結合律)。

減號或除號後面加上或去掉括號,後面數值的運算符號要改變。

例2:

657-263-257

=657-257-263

=400-263

(運用減法性質,相當加法交換律。)

例3:

195-(95+24)

=195-95-24

=100-24

(運用減法性質)

例4:

150-(100-42)

=150-100+42

(同上)

例5:

(0.75+125)*8

=0.75*8+125*8=6+1000

(運用乘法分配律))

例6:

( 125-0.25)*8

=125*8-0.25*8

=1000-2

(同上)

例7:

(1.125-0.75)÷0.25

=1.125÷0.25-0.75÷0.25

=4.5-3=1.5。

( 運用除法性質)

例8:

(450+81)÷9

=450÷9+81÷9

=50+9=59.

(同上,相當乘法分配律)

例9:

375÷(125÷0.5)

=375÷125*0.5=3*0.5=1.5.

(運用除法性質)

例10:

4.2÷(0。6*0.35)

=4.2÷0.6÷0.35

=7÷0.35=20.

(同上)

例11:

12*125*0.25*8

=(125*8)*(12*0.25)

=1000*3=3000.

(運用乘法交換律和結合律)

例12:

(175+45+55+27)-75

=175-75+(45+55)+27

=100+100+27=227.

(運用加法性質和結合律)

例13:

(48*25*3)÷8

=48÷8*25*3

=6*25*3=450.

(運用除法性質, 相當加法性質)