高中導數解題技巧之“找特殊點”

本篇用2016全國I導數大題的第(1)問來闡述更多找“特殊點”的辦法:

2016全國I(理):

PS:由於第(2)問在前面講過了,因此這裏不再贅述。

第(1)問可以分離變量做,但對於大部分同學來説,第(1)問用分離變量的難度比直接做要高,因為討論時找特殊點的時要麻煩一點,雖然處在事後諸葛亮的角度,討論的情況用分離變量做, 討論的情況直接做是書寫篇幅最少的,本篇只用直接討論的方式。首先最明顯的情況是,因此總體就分為了三種情況:;

然後由於,因此在討論時,又分為了三種小情況:,,:

高中導數解題技巧之“找特殊點”
上面將的情況都討論了,時通過極限思想可以看出是滿足題意的,所以接下來主要的問題就是如何用零點定理闡述時滿足題意,先演示第一種找特殊點的辦法:

高中導數解題技巧之“找特殊點”
高中導數解題技巧之“找特殊點”
這種處理成一元二次方程的方式也是找特殊點常用的方式之一。

找特殊點一定要敢想敢幹,不要畏手畏腳,可以非常自由的將特殊點鎖定到便於處理的區間裏,同時對函數放縮儘量的“狂野”,往往一個題目有非常多的找特殊點的方式,自己感覺怎麼順手就怎麼來。時刻記住這句話:

零點往往只關注其存在性,而不是具體位置。

版權聲明:本文源自 網絡, 於,由 楠木軒 整理發佈,共 452 字。

轉載請註明: 高中導數解題技巧之“找特殊點” - 楠木軒